Materi Pelajaran Matematika Kelas 9 BAB 2 Bangun Ruang Sisi Lengkung
A. Tabung (Silinder)
Perhatikan gambar di samping. Bentuk apakah yang dimanfaatkan alat musik tersebut. Mengapa drum selalu berbentuk tabung?
1. Unsur-unsur Tabung dan Melukis Jaring-jaring Tabung
Sebelum kita mempelajari lebih lanjut
mengenai tabung, coba sebutkan benda-benda di sekitar kalian yang
berbentuk tabung. Berikut ini akan kita pelajari berbagai hal tentang
tabung.
a. Unsur-unsur Tabung
Dapatkah kalian menyebutkan unsur-unsur sebuah tabung? Agar dapat menjawabnya, lakukanlah kegiatan berikut.
Dapatkah kalian menyebutkan unsur-unsur sebuah tabung? Agar dapat menjawabnya, lakukanlah kegiatan berikut.
Dari
kegiatan tersebut kita akan dapat mengetahui unsur-unsur tabung. Salin
dan isikan unsur-unsur itu pada tempat yang tersedia.
a. Tinggi tabung ....
b. Jari-jari alas tabung ... dan jari-jari atas tabung ....
c. Diameter alas tabung ... dan diameter atap tabung ....
a. Tinggi tabung ....
b. Jari-jari alas tabung ... dan jari-jari atas tabung ....
c. Diameter alas tabung ... dan diameter atap tabung ....
d. Alas dan atap tabung berupa bidang datar yang berbentuk ....
e. Selimut tabung berupa bidang lengkung. Apabila dibuka dan dilembarkan berbentuk ....
e. Selimut tabung berupa bidang lengkung. Apabila dibuka dan dilembarkan berbentuk ....
b. Jaring-jaring Tabung
Dari kegiatan sebelumnya kita dapat mengetahui bahwa tabung atau silinder tersusun dari tiga buah bangun datar, yaitu:
a. dua buah lingkaran sebagai alas dan atap silinder,
b. satu buah persegi panjang sebagai bidang lengkungnya atau selimut tabung.
Dari kegiatan sebelumnya kita dapat mengetahui bahwa tabung atau silinder tersusun dari tiga buah bangun datar, yaitu:
a. dua buah lingkaran sebagai alas dan atap silinder,
b. satu buah persegi panjang sebagai bidang lengkungnya atau selimut tabung.
Rangkaian
dari ketiga bidang datar itu disebut sebagai jaring-jaring tabung. Coba
kalian gambarkan jaring-jaring dari kaleng tersebut. Apakah kalian
mendapatkan jaring-jaring tabung seperti gambar berikut?
Gambar
2.3 menunjukkan jaring-jaring sebuah tabung dengan jari-jari alas dan
atapnya yang berupa lingkaran adalah r dan tinggi tabung adalah t.
Jaring-jaring tabung terdiri atas:
a. Selimut tabung yang berupa persegi panjang, dengan panjang selimut sama dengan keliling lingkaran alas tabung 2πr dan lebar selimut sama dengan tinggi tabung t.
b. Dua lingkaran dengan jari-jari r.
a. Selimut tabung yang berupa persegi panjang, dengan panjang selimut sama dengan keliling lingkaran alas tabung 2πr dan lebar selimut sama dengan tinggi tabung t.
b. Dua lingkaran dengan jari-jari r.
2. Menghitung Luas Selimut dan Volume Tabung
Sebuah benda berbentuk tabung memiliki
jari-jari r dan tinggi t. Jika kalian ingin membuat tabung dari kertas
yang ukurannya tepat sama dengan ukuran benda tersebut, berapakah luas
kertas yang kalian perlukan? Untuk menjawabnya, pelajari uraian materi
berikut.
a. Luas Selimut
Dengan memerhatikan gambar 2.3, kita dapat mengetahui bahwa luas seluruh permukaan tabung atau luas sisi tabung merupakan jumlah dari luas alas ditambah luas selimut dan luas atap. Untuk lebih jelasnya perhatikan gambar jaring-jaring tabung sekali lagi.
Dengan memerhatikan gambar 2.3, kita dapat mengetahui bahwa luas seluruh permukaan tabung atau luas sisi tabung merupakan jumlah dari luas alas ditambah luas selimut dan luas atap. Untuk lebih jelasnya perhatikan gambar jaring-jaring tabung sekali lagi.
b. Volume Tabung
Tabung merupakan pendekatan dari prisma segi-n, dimana n mendekati tak hingga. Artinya, jika rusuk-rusuk pada alas prisma diperbanyak maka akan membentuk sebuah tabung dimana hanya mendekati satu bidang alas, satu bidang atas dan satu sisi tegak. Karena alas dan tutup tabung berbentuk lingkaran maka volume tabung adalah perkalian luas daerah lingkaran alas dengan tinggi tabung.
Tabung merupakan pendekatan dari prisma segi-n, dimana n mendekati tak hingga. Artinya, jika rusuk-rusuk pada alas prisma diperbanyak maka akan membentuk sebuah tabung dimana hanya mendekati satu bidang alas, satu bidang atas dan satu sisi tegak. Karena alas dan tutup tabung berbentuk lingkaran maka volume tabung adalah perkalian luas daerah lingkaran alas dengan tinggi tabung.
B. Kerucut
1. Unsur-unsur Kerucut dan Melukis Jaring-jaring Kerucut
Perhatikan
gambar di samping. Pernahkan kalian melihat bangunan ini? Jika kita
cermati bentuknya, bangunan tersebut merupakan refleksi dari bangun
ruang dengan sisi lengkung yaitu kerucut.
a. Unsur-unsur Kerucut
Untuk lebih memahami unsur-unsur kerucut, dapat kita ilustrasikan seperti pada gambar 2.5 berikut.
Untuk lebih memahami unsur-unsur kerucut, dapat kita ilustrasikan seperti pada gambar 2.5 berikut.
Dengan mengamati gambar tersebut, kita dapat mengetahui unsur-unsur kerucut dengan melengkapi pernyataan berikut.
1) Tinggi kerucut = ….
2) Jari-jari alas kerucut = ….
3) Diameter alas kerucut = ….
4) Apotema atau garis pelukis = ….
1) Tinggi kerucut = ….
2) Jari-jari alas kerucut = ….
3) Diameter alas kerucut = ….
4) Apotema atau garis pelukis = ….
b. Jaring-jaring Kerucut
Berdasarkan kegiatan dan gambar di atas kita ketahui bahwa kerucut tersusun dari dua bangun datar, yaitu lingkaran sebagai alas dan selimut yang berupa bidang lengkung (juring lingkaran). Kedua bangun datar yang menyusun kerucut tersebut disebut jaring-jaring kerucut. Perhatikan gambar berikut.
Berdasarkan kegiatan dan gambar di atas kita ketahui bahwa kerucut tersusun dari dua bangun datar, yaitu lingkaran sebagai alas dan selimut yang berupa bidang lengkung (juring lingkaran). Kedua bangun datar yang menyusun kerucut tersebut disebut jaring-jaring kerucut. Perhatikan gambar berikut.
Gambar
2.6(a) menunjukkan kerucut dengan jari-jari lingkaran alas r, tinggi
kerucut t, apotema atau garis pelukis s. Terlihat bahwa jaring-jaring
kerucut terdiri atas dua buah bidang datar yang ditunjukkan gambar 2.6
(b) yaitu:
a. selimut kerucut yang berupa juring lingkaran dengan jari-jari s dan panjang busur 2πr,
b. alas yang berupa lingkaran dengan jari-jari r.
a. selimut kerucut yang berupa juring lingkaran dengan jari-jari s dan panjang busur 2πr,
b. alas yang berupa lingkaran dengan jari-jari r.
2. Menghitung Luas Selimut dan Volume Kerucut
Dapatkah kalian menghitung luas bahan yang diperlukan untuk membuat kerucut dengan ukuran tertentu? Perhatikan uraian berikut.
a. Luas Selimut
Dengan memerhatikan gambar, kita dapat mengetahui bahwa luas seluruh permukaan kerucut atau luas sisi kerucut merupakan jumlah dari luas juring ditambah luas alas yang berbentuk lingkaran. Untuk lebih jelasnya perhatikan jaring-jaring kerucut ini.
Dengan memerhatikan gambar, kita dapat mengetahui bahwa luas seluruh permukaan kerucut atau luas sisi kerucut merupakan jumlah dari luas juring ditambah luas alas yang berbentuk lingkaran. Untuk lebih jelasnya perhatikan jaring-jaring kerucut ini.
Jadi luas juring TAA1 atau luas selimut kerucut dapat ditentukan.
Karena luas selimut kerucut sama dengan luas juring TAA1 maka kita dapatkan:
Sedangkan luas permukaan kerucut
= luas selimut + luas alas kerucut
= πrs + πr2
= πr (s + r)
Jadi
= πrs + πr2
= πr (s + r)
Jadi
dengan r = jari-jari lingkaran alas kerucut
s = garis pelukis (apotema)
s = garis pelukis (apotema)
b. Volume Kerucut
Kerucut dapat dipandang sebagai limas yang alasnya berbentuk lingkaran. Oleh karena itu kita dapat merumuskan volume kerucut sebagai berikut.
Kerucut dapat dipandang sebagai limas yang alasnya berbentuk lingkaran. Oleh karena itu kita dapat merumuskan volume kerucut sebagai berikut.
Hubungan antara r, t dan apotema (s) adalah s2 = r2 + t2
c. Luas Selimut dan Volume Kerucut Terpancung
Luas selimut kerucut terpancung adalah luas kerucut besar dikurangi luas selimut kerucut kecil. Kerucut besar ACC' mempunyai tinggi t1, jari-jari r, dan apotema s1. Sedangkan kerucut kecil ABB' mempunyai tinggi t2, jari-jari r2, dan apotema s2. Luas selimut kerucut terpancung adalah luas selimut kerucut besar dikurangi luas selimut kecil.
C. Bola
Perhatikan
gambar di samping. Mengapa dalam olahraga bowling, benda yang
dilemparkan berbentuk bola? Apakah kelebihannya sehingga benda-benda
berbentuk bola digunakan dalam olahraga sepak bola, bola voli, bowling,
dan billiard? Agar dapat lebih mengenal bangun bola, pelajarilah materi
berikut ini.
1. Unsur-unsur Bola
Perhatikan gambar berikut.
Suatu
lingkaran diputar setengah putaran dengan diameter sebagai sumbu
putarnya akan diperoleh bangun ruang seperti gambar 2.10 (b). Bentuk
bangun yang demikian disebut bola dengan jari-jari bola r dan tinggi d.
2. Menghitung Luas Selimut dan Volume Bola
Sebelum mempelajari luas selimut dan volume bola, lakukanlah kegiatan berikut.
Ternyata
dari kegiatan di atas kita dapat merumuskan luas selimut atau permukaan
(sisi) bola. Jika jari-jari alas tabung tersebut r dan tingginya sama
dengan diameter d, maka luas selimut atau sisi bola dengan jari-jari r
adalah:
No comments:
Post a Comment